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A T H E O R E T I C A L  M O D E L  OF T H E  E L E C T R O M A G N E T I C  

E M I S S I O N  E F F E C T  OF R O C K  M E M O R Y  

V .  L. S h k u r a t n l k  a n d  A .  V .  L a v r o v  UDC 622:550.372 

The electromagnetic emission memory effect (EEME) is observed under cyclic mechanical loading of 
rock specimens with an increase in the load amplitude from cycle to cycle. The EEME is a jump-type increase 
in the activity of electromagnetic emission (EME) of a specimen after the largest value of load in the previous 
cycle is reached [1, 2]. By the activity is meant the number of EME pulses per unit time. 

Active experimental EEME studies have called for a theoretical understanding of the mechanism of 
this phenomenon, and thus a theoretical model of memory effects [3] has been designed. Based on linear 
fracture mechanics, this model [3] explains the peculiarities of some rock-memory effects in terms of stresses. 
However, it was designed for a low level of loads (below the long-time strength limit) and does not incorporate 
the mechanism of electromagnetic pulse generation. 

In this paper, we extend the model of [3] to the entire range of loads from zero to compressive strength. 
Main attention is given to the explanation of the experimentally observed EEME regularities. 

Before loading, the rock is assumed to contain S-shaped microcracks (Fig. 1), whose existence has 
been confirmed in experiments on model materials and rock specimens [4]. An S-shaped microcrack is a 
combination of a shear crack (BC in Fig. 1) and two tensile cracks (AB and CD). The latter branched off 
from the shear crack under natural conditions of rock loading under the action of shear in the plane BC [3-5]. 
In the perpendicular direction to the figure's plane, the crack length is assumed to be equal to unity, because 
we consider a two-dimensional problem. The crack sides are not in contact. The distance between S-shaped 
cracks before laboratory loading is much greater than the crack dimensions. 

Under natural conditions, the rock was subjected to complex loading with repeated variations in both 
the values of and directions of action of the principal stresses. The initial lengths of tensile cracks l ~ (i is 
the crack number) are therefore random. Let us assume that all shear cracks have the same length L but are 
distributed randomly (the angle ai is a random quantity). This corresponds to chaotic rock fracturing. 

When such a material is loaded by a uniaxial load a (Fig. 1), the stress state at the mouth of a tensile 
crack is characterized by two stress intensity factors (SIF): KI and KII. 

The value of KI is determined by the action of tensile forces at points B and C (Fig. 1) due to the 
shear in the plane BC. The KI SIF of an S-shaped crack is determined as [3, 5] 

~rL sin 2ai 
g i  - (1) 

4(v  
(( is a dimensionless coefficient [3]) and KII is determined by shear in the tensile-crack's plane 

o" 
KII = ~ k / ~ / s i n  2ai. (2) 

Here ~ is a dimensionless coefficient that characterizes the configuration of the S-shaped crack (the effect of 
the free plane BC). 

The Kn value is small for small li, and the crack grows for 

KI >1 Kc (3) 
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(KIe is the critical SIF for normal-separation cracks). 
An increase in the length of tensile cracks during their growth causes a decrease in KI. As a result, the 

cracks propagate under large loads if 

KH i> K,,c (4) 

(KIIc is the critical SIF for a longitudinal-shear crack). 
Rocks are media tha t  are not homogeneous, at a microlevel, in their s t rength parameters Kzc and KIic. 

This inhomogeneity is primari ly caused by the rock-grain size, because each grain and each intergranular 
contact display their own strength.  

Since it is impossible and unreasonable to consider the actual character of the medium's  inhomogeneity, 
we assume that  the path  of tensile-crack propagation (rays BA and CD in Fig. 1) contains regions of two Kzc 
values: K~c and K{" (Fig. 2). The  lengths of all constant-strength regions are equal to a. 

As the load increases from zero to some value ~, Kz increases monotonically, and, for ~ = 

4 r  the i th  tensile crack begins to grow. Since I/~ and a / a r e  random quantities, the cracks 
will start to grow at different times. An increase in load will give rise to an increasing number  of cracks. 

Crack propagation subject  to (3) will be stable, because, as follows from (1), the K~ value decreases 
with an increase in li, and the crack will grow only with increasing a. In the constant-strength region (Kic=  
K~c =cons t )  the crack grows without  stopping as the load increases. 

When the crack approaches the OP region (Fig. 2), it stops because the given level of load does not 

allow it to overcome the NO barrier. With  an increase in stress to a = 4~g~cr ~ + a/(Lsin2c~i), crack 
propagation resumes and will continue over the entire OP region with increasing a. 

At point P,  Kic decreases to K~c. In this case, the a value already exceeds that  required for crack 
propagation, and the crack grows stepwise to a length that  corresponds to the at ta ined level of load. Ideally, 
the growth occurs instantaneously for a = const. 

Further development of the crack can follow in two ways. When the K~lc value is large enough compared 
with the value of K~ 

-II I 0 Ii, zc >1 Kic~/(l i + 3a)/(l ~ + 2a), (5) 

the crack can grow over the entire QR region for o" =cons t .  Near the RS barrier at which crack propagation 
stops, the load must be increased again. 

When K{~c is not much larger than K{c [condition (5) is not satisfied], s tart ing with a certain point Z 
crack propagation will be controlled by the parameter K{c (Fig. 2). In approaching the RS barrier, the crack 
first stops and then resumes its propagation as soon as the condition Kic >1 K{'c is satisfied. 

The two indicated possibilities are illustrated in Fig. 3, where the dashed curves show crack length 
versus load in a Kit-homogeneous material (curve 1 corresponds to IQ~ = K~c , and curve 2 to h'ic = K~'c). 
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Figure 3a shows that crack propagation in a heterogeneous medium with strongly different K~c and K~' c values 
is actually controlled only by the parameter K~', i.e., the largest from the critical SIF. At the same time, 
Fig. 3b and formula (5) demonstrate that in a medium with close K~c and K~, crack propagation will also 
be controlled, sooner or later, only by one parameter (K~' SIF). We shall therefore consider a medium with 
greatly different K~c and K{~c values (Fig. 3a). 

The crack sides are electrified upon crack growth due to the separation of opposite charges on the 
fracture surfaces formed. While opening the crack, the potential between the crack sides increases, and 
when the critical voltage is reached, the discharge appears [6]. The discharge current decreases according 
to an exponential law and, as a result, the emission pulses acquire a saw-tooth shape, which was observed 
experimentally: 

E = E o e x p ( - t / r ) .  

In this case, E is the electric-field voltage in the EME pulse; E0 is the initial E value; and r is a discharge-time 
constant. 

Thus, to crack propagation on 2a (from stop to stop) corresponds one saw-tooth EME pulse. Here by 
the stops are meant the RS-type regions in Figs. 2 and 3. 

Let us determine the dependence of the emission activity/V (the number of pulses per second) on the 
stress a. Figure 3a shows that 

= d [ ( l i - /~  da 

da dr" 
Substituting 

we obtain 

li ( a L s i n  ,, 2 = 2ai /4~Kic  ) , (6) 

= crL sin 2o~i de 
4~aK~c dt" (7) 

As is seen from (7), the EME intensity increases with an increase in the load, which was confirmed in 
numerous experiments [7]. 

The following fact, which was established experimentally, can be explained within the framework of 
the suggested model as well. The total number of pulses before fracture nE decreases in transition from hard 
to soft rocks and also, within the same rock, in transition from more hard to less hard varieties [8]. As a 
matter  of fact, the K~' c values for the hardest grains are equal for rocks of the same mineralogical composition 
and are close for rocks of various species. The total number of pulses that are accumulated with increasing 
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load from 0 to a has the form 

- l ~ (aLsin2 d4cgi') 2 
n ~ -  - -  _~ ( 8 )  

2a 2a 

(in the latter transition we have allowed for the fact that as the load increases, the condition li >> l ~ holds). 
Formula (8) shows that for equal L, (, "" Kic , and a, the rocks that can sustain larger stresses without fracture 
emit a larger total number of EME pulses. 

Another experimental fact is the increase in the amplitude of EME pulses with increasing a. Figure 3a 
shows that for crack propagation on 2a, a progressively smaller increase in a is needed as the load increases. 
By virtue of the proportionality of the load and time, the growth of a crack on 2a takes less time. When 
the crack sides are separated, before the discharge appears the surface charge is neutralized by the current 
passing through the rock. Since the separation takes less time, the charge leakage decreases, thus giving rise 
to an increase in the initial value of the discharge current and, hence, in E0. 

We now explain the EEME regularities using the suggested model. Let in the first cycle the specimen 
be loaded to a maximum stress am. This means that after unloading the crack length obeys equality (6), 
where a must be replaced by am. 

Upon loading from 0 to O'm in the second cycle, condition (3) is not satisfied, and the cracks do not 
grow. With the load level a = am attained, the cracks begin to grow once again, and the EME-activity value 
is reached. 

Let us consider now the processes of crack growth when the compressive strength is approached. In this 
case, the tensile crack lengthens. As a result, crack propagation is controlled by condition (4) and is unstable 
in this case. Starting once, the process cannot stop, because KII "-" V~. The growth will thus continue until 
either the crack enters a free surface (the specimen surface or the surface of another S-shaped crack) or the 
secondary tensile crack forms. 

This is possible because the tensile crack now becomes a shear crack with SIF determined by (2). The 
secondary-crack growth will occur for a --- const, because the attained load is sufficient for the propagation 
of even larger cracks. 

The coalescence and continuous growth of shear and tensile cracks lead to violation of the agreement 
between the load values and crack lengths. This, in turn, causes the disappearance of EEME. 

Thus, the suggested model explains the experimentally observed EEME regularities of brittle rocks. 
This work was supported by the Russian Foundation for Fundamental Research (Grant 95-05-14224). 
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